Femtosecond stimulated Raman spectroscopy of the dark S1 excited state of carotenoid in photosynthetic light harvesting complex.

نویسندگان

  • Masayuki Yoshizawa
  • Ryosuke Nakamura
  • Orihiro Yoshimatsu
  • Kenta Abe
  • Shunsuke Sakai
  • Katsunori Nakagawa
  • Ritsuko Fujii
  • Mamoru Nango
  • Hideki Hashimoto
چکیده

Vibrational dynamics of the excited state in the light-harvesting complex (LH1) have been investigated by femtosecond stimulated Raman spectroscopy (FSRS). The native and reconstituted LH1 complexes have same dynamics. The ν(1) (C=C stretching) vibrational mode of spirilloxanthin in LH1 shows ultrafast high-frequency shift in the S(1) excited state with a time constant of 0.3 ps. It is assigned to the vibrational relaxation of the S(1) state following the internal conversion from the photoexcited S(2) state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway

Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains...

متن کامل

Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae.

Carbonyl carotenoids are important constituents of the antenna complexes of marine organisms. These carotenoids possess an excited state with a charge-transfer character (intramolecular charge transfer state, ICT), but many details of the carotenoid to chlorophyll energy transfer mechanisms are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to study ener...

متن کامل

Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state.

Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin-...

متن کامل

Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids.

Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (∼95%) energy-transfer from fucoxanthin to chlorop...

متن کامل

Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation.

Time-resolved excited-state absorption intensities after direct two-photon excitation of the carotenoid S(1) state are reported for light-harvesting complexes of purple bacteria. Direct excitation of the carotenoid S(1) state enables the measurement of subsequent dynamics on a fs time scale without interference from higher excited states, such as the optically allowed S(2) state or the recently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 59 1  شماره 

صفحات  -

تاریخ انتشار 2012